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An Enroll-to-Verify Approach for Cross-Task
Unseen Emotion Class Recognition
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Abstract—Most speech emotion recognition studies often focus on recognizing pre-set emotion classes. However, the task definition
may change due to a shift in focus to a previously unseen class in real-world applications. This cross-task modeling has not been
addressed previously. Lengthy data re-collection, model retraining, and the traditional adaptation and transfer learning approaches are
not applicable to this cross-task setting. This study proposes an enroll-to-verify framework to avoid model retraining and rapidly perform
a new task prediction using only a handful of enrolled samples. Specifically, we use negative angular margin prototypical loss in a
pretrained multiclass network as an emotion encoder. Then, we enroll a few samples corresponding to emotion classes in the new task
definition and simply compare the encoded embedding distance to perform recognition. In the experiments on the IEMOCAP dataset,
given a four-class pretrained emotion encoder, we achieved a 71.9% unweighted average recall in the frustration (unseen) recognition
task. The MELD dataset was used where the unseen class was surprise, fear, or disgust. The results revealed that enrolling only 20
samples without retraining was comparable to supervised training using the complete dataset. Further analyses were conducted to
demonstrate the working mechanism of our proposed enroll-to-verify approach.

Index Terms—negative margin, prototypical loss, unseen class, cross-task modeling
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1 INTRODUCTION

S PEECH emotion recognition (SER) has advanced sub-
stantially for modern intelligent applications, such as

smart assistant, customer service, and human-robot in-
teraction. The complexity of emotion causes SER to be
a challenging modeling task. A broad range of factors,
such as social, cognitive, and contextual elements, make
emotion categories inherently difficult to define precisely.
Most SER studies to-date focus on the task of basic emo-
tion categories that is defined based on the consensus of
primitive emotions: anger, happiness, sadness, disgust, fear,
and surprise [1]. Further, due to the natural frequency of
occurrence in daily life, the current studies tend to simplify
the recognition goal as a four-class recognition task (anger,
happiness, neutral, and sadness) [2], [3], [4]. Much effort has
focused on improving the general-purpose models for these
basic emotions and tend to ignore other emotions, such
as frustration, amusement, and guilt. However, a recent
study has shown that up to 27 emotion categories can be
specified by social, cognitive, and contextual circumstances
[5]. They may be rare in the collected datasets but common
in our daily lives [6]. Researchers often discard these rarely
occurring emotion classes to mitigate data imbalance and
model learning difficulties. However, this SER development
trend limits the applications for deploying the models in
real-life scenarios.

Conventionally, an emotion database is collected based
on prior knowledge or a pre-defined task, often resulting in
an initial collection of pre-set emotion samples (often prim-
itive categories). However, the task definition can change
over time in real life due to different targeted application

J.-L. L. and C.-C. L., are with Department of Electrical Engineering,
National Tsing Hua University, Taiwan (e-mail: cllee@gapp.nthu.edu.tw,
cclee@ee.nthu.edu.tw).

scenarios. Although the recording environment stays the
same, the unseen emotion class in the new task hinders
the use of the originally trained models. For example, a
customer call dataset initially contains basic four emotion
categories, but the task may change to frustration detection.
If the frustration class is unseen in the original training
dataset, using the originally trained models based on the
basic emotions is no longer feasible; re-collecting the frus-
tration data and retraining the model based on the new
task lead to additional costs. Furthermore, current transfer
learning frameworks are not directly applicable in this case
because they only match source to target domain of the
same emotion categories. We term this situation as cross-task
modeling. The dataset has N categories of basic emotions
E = {e1, e2, ..., eN} labeled initially, but the target task is to
recognize emotion classes E′ = {ei, ej} where ei and ej can
be unseen or seen emotions in the initially collected dataset.
We consider the situations with at least one unseen emotion.
The possible situations are ei ∈ E, ej /∈ E or ei, ej /∈ E.

This study introduces an enroll-to-verify approach for
the cross-task problem inspired by the speaker verification
process [7], [8] that can rapidly handle verification of un-
seen speakers. Following the definition of cross-task mod-
eling, given adequate samples of primitive emotions (e.g.,
E = {angry, happy, neutral, sad}), we aim to enable a new
classification task E′ = {ei, ej} by enrolling data collected
in the same database, with minimal manual effort. Although
many prior studies have achieved high performances on the
multiclass basic emotion recognition task [9], [10], none can
handle a new task E′ without retraining. To address this
cross-task problem elegantly, we avoid the meta multitask
learning [11], few-shot learning [12] and zero-shot learning
[13] approaches which require either complex model retrain-
ing for each new task or additional auxiliary knowledge on
the data distribution of the unseen categories. In this work,
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We propose using a negative angular margin prototypical
(NAMP) loss to pretrain a multiclass (E) network as a pro-
totypical emotion encoder. At the cross-task inference stage,
given a new task E′, a few utterances of the specified classes
are enrolled by computing the encoded embedding using
the pretrained prototypical emotion encoder, and treated
as emotion prototypes. We could then verify whether each
query utterance is in the ei or ej class using the shortest
distance to these emotion prototypes.

We evaluated this approach for the cross-task setting on
two databases, IEMOCAP and MELD, specifies the prede-
fined task asE = {angry, happy, neutral, sad} and verified
different new tasks with various combinations of ei and ej .
In our results, for IEMOCAP, in the newly defined binary
frustration recognition task (E′ = neutral, frustration), by
enrolling only 20 samples (ten neutral and ten frustration
samples), we achieved performance comparable to using
the model trained on all available neutral and frustration
samples. A similar setup was carried out on the MELD
where the new task was defined as binary classification
between the neutral and an unseen class (surprise, fear, or
disgust). Furthermore, we compared different loss functions
and model architectures used in the pretrained encoder
network, changing various new task definitions as different
pairs of emotion classes. In our analysis, the visualization
of embedding and the change in pretrained emotion classes
revealed the working mechanism of the encoder loss and
the pretrained emotion space used as the emotion prototype
encoder. Another analysis is designed to examine the effects
of the enrolled sample number for the verification results.

We highlight our contribution in this study as follows:

• This study is the first to introduce an enroll-to-verify
approach to address the cold-start cross-task SER
modeling task.

• We conduct a comprehensive evaluation of the
enroll-to-verify approach on two large emotion
databases.

• We perform analyses to illustrate the different de-
signs of the emotion prototype encoder and enroll-
to-verify procedure.

The rest of the paper is organized as follows. Section 3 intro-
duces the enroll-to-verify steps and details of the proposed
NAMP loss. Next, Section 4 demonstrates the experimen-
tal setups and comparison results for two databases, and
Section 5 presents the analysis results. Finally, Section 6
concludes the work and describes future works.

2 RELATED WORKS

Current developments in SER research are broadly divided
into within- and cross-database settings. We summarize the
past SER studies in Table 1 based on the major modeling
issue, targeted topic, and specified task in their respective
studies. The table can be used to categorize our proposed
study and differentiate it from the past studies. Although a
wide range of studies has been carried out to address dif-
ferent issues, researchers usually select a pre-defined set of
labels. Two common emotion labels are used: dimensional
and categorical, where dimensional attributes include acti-
vation, valence, and dominance attributes, and categorical
labels often include basic emotion categories.

The within-database studies focus on optimizing context
(database) specific models which have achieved promising
accuracy. One direction of work involves feature space
learning for SER, it comprise studies addressing temporal
dynamics [14] and in-the-wide data [15], [16] problem to im-
prove recognition performances. Another major line of work
has considered various contextual factors, such as speaker
variability [9], [17], conversational interlocutor behavior
[18], [19], and emotion under particular expressive condi-
tions (monologue speech under stress [20] or dialog when
using bus services [32]), to improve SER performances.
Issues regarding emotion labels including uncertainty [21],
inter-category relationship [22], and inter-task relationship
[11] are emerging topics to be addressed. For example, Ma
et al. attempted to improve the targeted emotion category
classification leveraging category-wise correlations [22]. Cai
et al. leveraged dimensional emotion attributes as an auxil-
iary task to facilitate the categorical classification task [11].
The studies in addressing the inter-category relationship
[22] and inter-task relationship [11] problems have lever-
aged the transfer learning techniques originally developed
for the cross-database setting. As these topics are recently
identified, they have not been clearly defined in the past
transfer learning research paradigm [33], [34].

The SER studies using the cross-database setting con-
cerns cross-domain model generalization. The technical de-
velopments are broadly covered under the term, “transfer
learning” which defines transductive and inductive transfer
learning based on the availability of target domain data [33],
[34]. The transductive transfer learning focuses on a scenario
with unavailable labels in the target domain and usually
uses domain adaptation techniques. This line of works
concentrates on developing algorithms to align the cross
datasets feature distribution. Exemplary studies involve
common space learning, which improve feature transfer-
ability [23], [24], [25]. The inductive transfer learning in-
volves a scenario with available target domain labels and
even includes contextualized factors modeling that align the
domains by considering gender and language factors [26],
[27], [35]. The domain shift problem caused by different dis-
tributions in the same emotion category between domains
are partially mitigated by domain adversarial learning [28],
[29], [30], [31]. While major effort has been carried out in
this domain, the application setting of these algorithms is
also constrained. One obvious limitation is that although
every context realistically includes nonoverlapping emotion
categories, these cross-database algorithms are designed to
match the same emotion categories between the source and
target domains. This constraint, while partially alleviated
by working in the universal dimensional representation of
emotion (activation and valence) to avoid different label
categories in the target domain [27], [31], must be relaxed
to be flexible in a real world setting. Also, the dimensional
attributes are usually derived using a rough mapping rule
from the categorical labels, which introduces unnecessary
artifacts and uncertainty to the task.

In summary, most if not all of these prior works in set-
tings of either within-database or cross-database confronted
a similar problem in which they do not address the issue of
efficiently perform emotion recognition for unseen or rarely
occurring emotion categories.
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TABLE 1
A summary of speech emotion recognition studies.

Within Database
Issue feature space learning contextualized factors labeling

Topic
temporal dynamics [14]

in-the-wide data [15], [16]

speaker variability [9], [17]
conversation [18], [19]

conditioned situations [20]

uncertainty [21]
inter-category relationship [22]

task transfer [11]
cross-task verification (Ours)

Task
dimension [16]

category [14], [15]
dimension [18], [20]

category [9], [17], [19]

dimension [21]
category [22]

dimension→ category [11]
category→ new category (Ours)

Cross Database
Issue feature space learning contextualized factors domain shift

Topic common space learning [23], [24], [25] multitask learning [26]
cross language [12], [27]

domain adversarial [28], [29]
[30], [31]

Task
dimension [23]

category [24], [25]
dimension [27]

category [12], [26]
dimension [28], [30], [31]

category [29]

TABLE 2
A summary of two databases emotion distribution

IEMOCAP MELD
Emotion cross-validation train validation test

angry 1103 1109 153 345
happy 1636 1743 163 402
neutral 1708 4710 470 1256

sad 1084 683 111 208
frustration 1849 - - -

disgust 2 271 22 68
fear 40 268 40 50

surprise 107 1205 150 281

3 METHODS

3.1 Emotion Databases

We used the IEMOCAP and MELD databases, and the
emotion distributions of the datasets are listed in Table 2.

3.1.1 IEMOCAP
The IEMOCAP is a benchmark SER dataset [36] which
includes around 12 hours of dyadic spoken interaction
sessions from ten speakers. The resulting 10039 utterances
are labeled for emotion categories by at least three annota-
tors. We include the anger, happiness, neutral, and sadness
categories widely-used in the previous studies [9], [37] as
the pre-set (basic) emotions for model pre-training. The
excitement category is merged into the happiness class. In
addition, the frustration class is a non-primitive yet common
emotion class and has enough samples. We use it as the
unseen emotion class for our cross-task modeling.

3.1.2 Multimodal EmotionLines Dataset
The MELD is a multimodal multi-party database collected
from the TV series “Friends” [38]. It contains seven emotion
categories (anger, disgust, fear, happiness, sadness, surprise,
and neutral). The dataset is split into training, validation,

and testing sets released for research. For cross-task ex-
periments, we used the same four emotion classes (anger,
happiness, neutral, sadness) in the pretrained model, and
used disgust, fear, and surprise as the unseen classes for the
targeted recognition task.

3.2 Features

In this study, we extracted vq-wav2vec as the acoustic fea-
tures [39] trained using a self-supervised context prediction
task with contrastive loss to embed information from raw
audios. The pretrained audio encoder could directly project
the raw waveform into the latent space. The vq-wav2vec
extended wav2vec by conducting vector quantization us-
ing the Gumbel-Softmax approach. Latent features were
organized as different groups mapped to codebook vectors.
Discrete tokens were used in BERT training, optimized
with random masks. We used the pretrained model on the
Librispeech corpus [40] containing 960 hours of audio. The
512 dimensional latent vq-wav2vec vectors were extracted
using the fairseq tool [41].

3.3 Enroll-to-Verify Framework

The overall framework is illustrated in Fig. 1. The three
primary steps include: the backbone prototype encoder
network pretraining, targeted task enrollment, and unseen
emotion verification. These steps are similar to the speaker
verification procedure [42]. As the cross-task modeling has
not been clearly defined, and the enroll-to-verify steps have
not been used in the SER domain, we introduce the pro-
cedures in detail in the following subsections. We describe
the pretrained prototype encoder network architecture in
section 3.3.1, and the NAMP loss in Subsection 3.3.2. The
targeted task enrollment and verification procedure are de-
scribed in section 3.3.3. We also organize the enroll-to-verify
approach as a step-by-step procedure shown in Algorithm
1.
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Fig. 1. This is the overall enroll-to-verify approach for cross-task emotion recognition. The emotion prototype encoder (GRU-transformer) uses vq-wav2vec
features to optimize with both multi-class cross entropy loss and negative angular margin prototypical (NAMP) loss for further emotion embedding extraction.
The enrollment includes NP samples for each of the targeted emotion classes. Finally, by computing the distance between the averaged enrolled emotion
embeddings and the emotion embedding in query, the class with smaller distance is assigned as the final prediction.

3.3.1 Emotion Prototype Encoder

The network architecture of the emotion prototype encoder
is a GRU-transformer. We performed two-step temporal
pooling on the vq-wav2vec features before the GRU layer.
Then, we used a transformer stacked with multi-head self-
attention layers [43] to capture different temporal compo-
nents. The acoustic features xt ∈ RD at a timestep t are
transformed to the key and query space by the scaled dot-
product self-attention:

αtτ =
exp(βxTt W

T
q Wkxτ )∑

τ ′ exp(βxTt W
T
q Wkx′τ )

, (1)

where Wq,Wk ∈ RD×D and β = 1√
D

is a scaling factor.
We transformed xt into the value space and calculated the
weighted sum with scaled dot product attention to obtain
the output embedding P . Empirically, the representations
are more robust when including the GRU layer before the
transformer for multiclass recognition. After performing
mean pooling to obtain an embedding vector of the latent
transformer output, the final fully connected layer maps the
mean embedding vector to the multiclass emotion space.
Thus, the embedding vector is also used for loss calculation
and verification steps.

3.3.2 Encoder Loss

We proposed using the NAMP loss to train the emotion
prototype encoder network described in section 3.3.1. This
section first states the formulation of the angular margin
prototypical loss to explain why the loss design can be
used in the enroll-to-verify process. Then, we elaborate a
generalization issue on the loss design if we directly apply
the loss to the SER domain. Therefore, we describe the
design of NAMP loss to mitigate the issue for cross-task
SER application scenarios.

The idea to train the emotion prototype encoder with
designed loss functions originated from the speaker veri-
fication domain. The designed losses enhanced the ability
to represent new data by extracting embeddings from a
learned encoder and allowed the enroll-to-verify procedure

by a simple distance measurement. With N utterances sam-
pled from K emotion classes, the ith sample embedding
from class k ∈ K is denoted as Pk,i, where i ∈ N . This
sampling technique from metric learning implemented the
same procedure of the verification steps that enrolled a few
utterances as prototypes. This N number is usually chosen
by the same number for enrollment and thus the training
can match the same process of enroll-to-verify in the testing
stage. Similar to the typical prototypical network [44], we
deemed the average of the episodic mini-batch embeddings
as the centroid representation ck:

ck =
1

N − 1

N−1∑
i=1

Pk,i (2)

We computed the distance between the embedding Pj,i from
class j ∈ K to each centroid ck using cosine similarity:

Sj,k = w · cos(Pj,i, ck) + b (3)

where w > 0 was a learnable scaling factor. This cosine
similarity measurement projected the distance metric onto a
normalized hypersphere. In the two conditions, j = k and
j 6= k, the loss could be designed to reduce the distance
between representations for the j = k condition, and en-
larged the distance for the j 6= k condition. Most previous
speaker and face verification studies had also followed this
loss design for discriminative learning of the network [7],
[45], [46], [47]. The latent embedding extracted from the
discriminative network could thus properly represent each
acoustic sample in the enroll-to-verify procedure.

Combined with the angular margin loss [7], we could
introduce a margin m ∈ R to the similarity function to
adjust the inter-class and intra-class emotion distribution on
the hypersphere.

Sj,k =

{
w · (cos(Pj,i, ck) +m) j = k

w · cos(Pj,i, ck) j 6= k
. (4)

However, Liu et al. have found a generalization issue in a
few-shot learning study that the discriminative loss over-
emphasized on large inter-class variance and small intra-
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class variance of the pretrained classes and led to large
intra-class variance of the unseen class [48]. In the case
of the enroll-to-verify for cross-task SER, the pretrained
emotion prototype encoder cannot be updated as the few-
shot learning does. If the pretrained emotion prototype
encoder cannot enlarge the intraclass variance of the unseen
class, it would deteriorate testing performance. In addition,
the naturally existing emotion ambiguity is another reason
making the generalization issue serious. The small intra-
class variance of the pretrained prototype emotion classes
reduces the representation capability on the overlapped pre-
trained emotion space where the unseen emotion might be
located. Hence, we constrained the marginm < 0 learned as
a negative value, to penalize the over-discriminated decision
boundaries between different basic emotion classes. The
similarity Sj,k was transformed via a negative log likelihood
function as the NAMP loss. Finally, we added the cross-
entropy loss Lce to balance the discriminability and the
emotion ambiguity of the NAMP loss:

L = Lce −
1

K

K∑
j=1

log
eSj,j∑K
k=1 e

Sj,k

. (5)

The cross-entropy loss also maintains the robustness of
model training, and alleviates convergence failure on the
basic emotion classification task.

Algorithm 1 Enroll-to-verify
Input Acoustic features X = {xi|1 <= i <= N} and

each xi ∈ RT×D has time step T and feature dimension D
Training Randomly initialize parameters θ in an emo-

tion prototype network f with an encoder enc and a classi-
fier clf . The training will run for Niter iteration.

1: for i = 1 to Niter do
2: Calculate embedding Pi = enc(xi)
3: Calculate the centroid ck of the sample’s correspond-

ing to label class k
4: Generate prediction by the embedding, yi = clf(Pi)
5: Calculate the Loss L with the prediction y for soft-

max loss and the embedding Pi along with the centroid
ck for the NAMP loss

6: Optimize parameters θ with the calculated loss

Enroll Acoustic features Xval
k1 = {xvalk1,1|1 <= i <=

Np}, Xval
k2 = {xvalk1,2|1 <= i <= Np} for class k1 and k2

sampled from the validation set with Np samples for each
class

1: P k1 = 1
Np

∑Np

i=1 enc(x
val
k1,i)

2: P k2 = 1
Np

∑Np

i=1 enc(x
val
k2,i)

Verify Acoustic features of a query sample xq .
1: Calculate embedding Pq = enc(xq)
2: Compute cosine distance Dq,k1 between Pq and P k1
3: Compute cosine distance Dq,k2 between Pq and P k2

Output class k by argmin
k
{Dq,k1, Dq,k2}

3.3.3 Enrollment and Verification Procedure
With the trained prototype multiclass network encoder
based on NAMP loss, we extracted the transformer-encoded
output P as the emotion embedding for each utterance.

In the testing phase, we enrolled NP embeddings from
utterances for each emotion class in a newly defined task
which includes unseen emotion class. Then, we computed
the average of these NP embeddings of the emotion class
k ∈ K as an enrolled emotion representation P k. This
emotion representation P k is an emotion prototype that
characterizes the emotion class in the learned deep network
embedding space. Finally, for each query embedding Pq
for testing, we calculated the cosine distance Dq,k (one
minus cosine similarity) between this embedding Pq and
each enrolled embedding P k. The utterance is predicted as
emotion class k by choosing the smallest Dq,k, finding the
most similar enrolled emotion prototype using mink′ Dq,k′ .

4 EXPERIMENTS

4.1 Experimental Setup
We performed leave-one-dyad-out cross-validation on the
IEMOCAP dataset, and split the training, validation, and
testing sets on the MELD, following the common settings
for these two databases. On the IEMOCAP, we left one
speaker for testing and another speaker from the same dyad
for validation in each fold. We reported the unweighted
average recall (UAR) values and weighted F1 scores in
Table 4 for a comprehensive evaluation. We conducted the
following three experiments to compare different state-of-
the-art models and validate the network parameters.

• Exp I: comparison of different encoder loss functions
• Exp II: comparison of different input features and

network architectures of the emotion prototype en-
coder

• Exp III: results from varying definitions of new tasks
E′ of different emotion classes

The pretrained task E included four basic classes (angry,
happy, neutral, and sad), and a new task E′ was defined
with an unseen emotion e5 and an observed class using the
same database. In Exp I and Exp II, the cross-task experi-
ment was set up to pretrain a four-class emotion network
encoder for one task and recognize E′ = {neutral, e5}
for another task. We chose frustration in the IEMOCAP
and disgust, fear, and surprise in the MELD as the unseen
emotion, e5 for the targeted task. In Exp III, we changed
the new task definition to E′ = {ei, e5} where ei can be
angry, happy, or sad. In the enroll-to-verify procedure, we
enrolled 10 neutral samples and 10 targeted class samples
from the validation set and performed the binary emotion
verification task on the testing set. The setting examined
the situation in which we could not retrain the model and
none of the prior information for the targeted emotion was
accessible. We detailed the compared loss functions of Exp I
in Section 4.1.1, and the compared features and architectures
of Exp II in Section 4.1.2.

4.1.1 Compared Loss Functions
Exp I was conducted to compare the encoder loss described
in Section 3.3.2 with other state-of-the-art loss functions
for verification. We showed the four-class results on the
pretrained task, which was comparable to recent studies,
and focused on the performance comparison of the newly
defined task with the unseen emotion class. In Table 4, Prior
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denotes the best performance from the prior SER works on
the four-class prediction task using the IEMOCAP [9], [10]
and MELD [19], [37]. This baseline is reported to demon-
strate the performance our pretrained encoder network. All
denotes the model trained with the complete two-class data
from the entire dataset for the newly defined binary classifi-
cation task. For example, we used 1,849 frustration samples
and 1,708 neutral samples to conduct cross-validation for
this binary classification experiment. This strong baseline
indicates the scenario when we re-collect labeled data and
re-train a model for the new task. For the other compared
models, we followed the setting described in Section 4.1,
which only used 10 neutral samples and 10 targeted class
samples from the validation set for the final binary task.
Considering that no previous study has this cross-task prob-
lem explicitly, we compared several state-of-the-art speaker
verification approaches for this cross-task experiment, as
follows:

• SM: Basic multiclass cross entropy loss.
• AM: Angular margin softmax loss [7], [45].
• AAM: Additive angular margin softmax loss [7].
• Tri: Triplet loss, minimizing intraclass distances and

maximizing interclass distances [49], [50].
• Proto: Prototypical loss, computing the squared Eu-

clidean distance against centroids for classification
[44].

• AProto: Angular prototypical loss, using the cosine
similarity function with a linear transformation [8].

• AMProto: Constraint for the margin to be learned as
positive values for AProto.

• NAMP: Our proposed approach in Section 3.3.2.

The AM and AAM are two angular margin approaches de-
signed to enlarge interclass variance and minimize intraclass
variance. The Tri, Proto, and AProto approaches are metric
learning approaches that directly optimizes the distance
metric for small intraclass and large interclass distances.
Tri assigns a positive and a negative sample to an anchor
while Proto and AProto estimates the centroid to compare the
intraclass and interclass distance. The AMProto and NAMP
combine the angular margin with the prototypical network
and use positive and negative margins, respectively. Besides
the different loss functions, we also reported margin m as
a hyper-parameter to show the effects of angular margin
prototypical loss. We changed margin m in Eq. (4) from -0.4
to 0.3 and presented the results in Fig. 2.

4.1.2 Compared Features and Encoder Architectures
In Exp II, we changed the acoustic feature set (Section 3.2)
and the emotion prototype encoder architecture (Section
3.3.1) to other state-of-the-art features and networks. These
networks were all trained using the NAMP loss described in
Section 3.3.2. In Table 5, we compared the following features
and networks:

• NAMP: Our proposed approach in Section 4.1.1
• Emobase: Using the emobase feature set extracted

from the opensmile toolbox [51] to replace the vq-
wav2vec in Section 3.2 for the GRU-Transfomer

• Transformer: NAMP without the GRU layer before
the transformer

TABLE 3
The hyperparameters used in our experiment. Nlayer and Nhead

denote number of layers and heads in the transformer network. The
notation N, K, and Np are minibatch sampled size, emotion classes,

and number of enrolled samples which are consistent to the notation in
Section 3.3.2.

Network Architecture

Dataset GRU transformer Nlayer Nhead

IEMOCAP 256 512 1 2
MELD 256 128 1 2

Training
Parameters

epoch learning rate decay step decay rate
100 0.001 20 10
N optimizer K Np

10 Adamax 4 10

• BLSTM: The Bidirectional Long Short Term Memory
network using the vq-wav2vec features described in
Section 3.2

• BLSTM+NetVLAD: BLSTM with NetVLAD layer
[52] using vq-wav2vec features

• CNN+NetVLAD: Convolutional Neural Network
with NetVLAD layer [53] using spectrogram as input

The emobase has been used in several SER studies [9],
[54], and contains the pitch (fundamental frequency), in-
tensity (energy), loudness, cepstral (12 MFCC), voicing
probability, fundamental frequency envelope, eight line
spectral frequencies, zero-crossing rate, and delta regres-
sion coefficients of these low-level descriptors. BLSTM
has been widely used in previous works [9], [17] ,
and BLSTM+NetVLAD and CNN+NetVLAD include the
NetVLAD encoding layer has been widely used in the
speaker recognition [55]. In addition, CNN+NetVLAD was
fine-tuned from the speaker recognition pretrained model
on the VoxCeleb database [56].

4.1.3 Network Configuration
The hyperparameters were obtained through the best vali-
dation performance in a grid search. The 512-dimensional
vq-wav2vec features were input into a single-layer GRU
with 256 nodes, followed by {1, 2} transformer layers with
{64, 128, 256, 512} nodes. The number of attention heads
was selected from the set {1, 2, 4}. We trained the network
with 100 epochs and a 0.001 learning rate, and we divided
the learning rate by 10 every 20 epochs. The mini-batch
size was ten for each emotion class to match the enrolled
number in the verification stage and the optimizer was
Adamax. The searching range of the hyperparameters cov-
ers the parameters used in the previous four-class emotion
recognition studies [9], [19]. Table 4 shows a summary of the
hyperparameters. The models are trained using a NVIDIA
GTX 1080 GPU with 11GB memory. The parameters N and
K indicate that we sample N samples from the K classes in
a batch for training the encoder described in Section 3.3.2.

4.2 Exp I: Comparison of Encoder Losses
For the four-class pretraining task, as listed in Table 4, the
proposed NAMP achieved 62.3% and 40.3% UAR on the
IEMOCAP and the MELD, respectively. The results were
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TABLE 4
The results of different cross-task modeling approaches. Details of the abbreviations (Prior: Prior Works, All: re-training with the whole dataset,
SM: softmax, AM: angular margin, AAM: additive angular margin, Tri: triplet, Proto: prototypical, Aproto: angular prototypical, AMProto: angular

margin prototypical, NAMP: negative angular margin prototypical) refer to session 4.1.1.

IEMOCAP 4-class Prior SM AM AAM Tri Proto AProto AMProto NAMP
Pretrain UAR 63.1 58.2 62.3 57.9 49.3 58.3 61.1 59.8 62.3
Verify 2-class All SM AM AAM Tri Proto AProto AMProto NAMP

frustration F1 69.2 62.2 64.4 64.1 64.1 62.4 58.3 66.9 70.9
UAR 70.0 63.1 65.2 65.1 64.5 62.8 61.1 67.2 71.9

MELD 4-class Prior SM AM AAM Tri Proto AProto AMProto NAMP
Pretrain UAR 40.3 40.0 40.3 39.6 34.9 36.4 39.7 39.2 40.4
Verify 2-class All SM AM AAM Tri Proto AProto AMProto NAMP

surprise F1 75.6 57.8 72.0 66.8 64.8 59.5 61.3 70.2 71.1
UAR 69.6 56.8 59.7 56.9 60.4 55.7 55.6 59.4 60.9

fear F1 79.0 70.8 86.7 77.5 77.0 65.5 75.6 76.0 77.6
UAR 56.4 59.3 54.9 56.2 51.0 50.2 57.8 54.3 57.9

disgust F1 76.3 71.8 56.6 68.4 63.5 59.1 68.6 66.9 72.4
UAR 63.2 54.9 56.6 57.1 51.9 49.4 58.0 57.1 59.8

comparable to the previous works on the IEMOCAP (57.1%
to 63.1%) [9], [10] and the MELD (39.4% to 40.3%) [19],
[37]. Although [10] achieved 63.1% and 55.5% UAR on the
IEMOCAP using a transformer with and without ensemble
learning, respectively, the proposed framework alleviated
the heavy computational burden of the ensemble approach
and still obtained a comparable UAR.

For the newly defined binary verification task (cross-task
modeling), our proposed NAMP (F1 = 70.9% and UAR =
71.9%) performed slightly better than All (F1 = 69.2% and
UAR = 70.0%) and significantly better (p-value < 0.05 in
McNemar’s test [57]) than all the other methods in the
frustration versus neutral classification on the IEMOCAP
dataset. We achieved this comparable result by enrolling
only 20 utterances (10 frustration utterances and 10 neutral
utterances) rather than training with over 2000 samples.
This result indicates the capability of the well pretrained
network to perform cross-task recognition without explicit
retraining. Other margin-based algorithms such as AM and
AAM outperformed SM by 2.2% for the F1 score and 2.1%
for UAR and by 1.9% for the F1 score and 2.0% for UAR,
respectively, which indicates the necessity of using added
margin in this cross-task modeling. In addition, AMProto
had a 66.9% F1 score and a 67.2% UAR, demonstrating
that the margin was also beneficial to prototypical learn-
ing. Although this positive margin approach worked, the
negative margin (NAMP) performed even better. This result
implies that regularizing the basic emotion pretraining with
the negative margin is more favorable than overly enlarging
inter-class distances when the learned model derives repre-
sentations for unseen emotions.

On the MELD, NAMP attained the highest UAR in rec-
ognizing surprise and disgust versus neutral, and achieved
the second highest UAR for the fear recognition task. The
results for the new task on surprise were superior to those
of All by 4.5% for the F1 score and 8.7% for UAR, and
its results for disgust were superior by 3.9% F1 and 3.4%
UAR, whereas the fear task had a minor difference (-1.4%
for F1 and +1.5% for UAR). The baseline method, SM, failed

(a) IEMOCAP Frustration (b) MELD Surprise

(c) MELD Fear (d) MELD Disgust

Fig. 2. The results using different margin in the loss.

to obtain comparable results on every metric which also
occurred on AM and Tri. Generally, AProto and AMProto
performed better than Tri and Proto. The positive margin
improved only the surprise task results (8.9% for F1 and
3.8% for UAR). However, with its negative margin, NAMP
surpassed AProto in recognizing surprise (9.8% for F1 and
5.3% for UAR), fear (2.0% for F1 and 0.1% for UAR),
and disgust (3.8% for F1 and 1.8% for UAR). In addition,
NAMP outperformed the angular loss methods AM and
AAM. Here, NAMP maintained the advantages from the
prototypical loss that mimics enrollment and verification
via episodic sampling and the discriminative space from the
margin approaches.

In comparing different margins in the angular margin
prototypical loss, we set the margin m in Eq. (4) as a hyper-
parameter to examine its corresponding F1 and UAR values
in the cross-task modeling. Fig. 2 presents the results of
frustration on the IEMOCAP dataset, and surprise, fear, dis-
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TABLE 5
Results compared with different network architectures and parameters.

IEMOCAP 4-class NAMP Emobase Transformer BLSTM BLSTM+NetVLAD CNN+NetVLAD
Pretrain UAR 62.3 59.4 60.8 56.5 57.9 55.1
Verify 2-class NAMP Emobase Transformer BLSTM BLSTM+NetVLAD CNN+NetVLAD

frustration F1 70.9 65.5 67.8 62.8 65.8 62.3
UAR 71.9 65.4 68.9 62.9 65.9 63.0

MELD 4-class NAMP Emobase Transformer BLSTM BLSTM+NetVLAD CNN+NetVLAD
Pretrain UAR 40.3 38.4 39.1 35.4 36.3 34.9
Verify 2-class NAMP Emobase Transformer BLSTM BLSTM+NetVLAD CNN+NetVLAD

surprise F1 71.1 64.3 70.3 58.8 65.0 59.1
UAR 60.9 57.2 59.8 56.6 59.6 55.9

fear F1 77.6 75.8 77.2 74.1 77.4 73.2
UAR 57.9 55.4 56.9 51.8 58.5 52.3

disgust F1 72.4 70.1 70.8 70.7 70.6 69.3
UAR 59.8 56.6 58.6 52.3 58.5 52.2

gust on the MELD dataset. The most effective margin values
were usually -0.3 and 0.3, while the lowest F1 and UAR often
occurred when the margin was equal to zero. The difference
in the positive margin values could attain the best results
using m = 0.2 or m = 0.3, and no significant performance
difference was found for m = −0.2 and m = −0.3. How-
ever, the results deteriorated when the margin value equals
-0.4. A large negative margin might overly encourage over-
lap between the pretrained feature space and degrade the
basic discriminative power on emotion. Therefore, properly
selecting the margin is an important issue because a tradeoff
exists between the discriminative capability and generaliz-
ability. The large positive margin would overemphasize the
discriminative capability and reduce the generalizability for
the cross-task scenario while the large negative margin can
directly damage the classification ability on the pretrained
network. We can regard the negative margin as a regular-
ization mechanism, and select a proper negative margin
value which still result in competitive performance on the
pretrained four-class recognition task.

4.3 Exp II: Comparison of Features and Architectures
The pretrained emotion prototype encoder plays a key role
in providing a proper embedding space for the enroll-
to-verify process. Therefore, we compared different input
features and several architectures to examine the effects of
pretrained encoder networks on the emotion verification
results in the cross-task setting.

In Table 5, using the emobase feature set achieved a
59.4% UAR for the four-class recognition task and a 65.5%
F1 score and a 65.4% UAR for the frustration classification
task on the IEMOCAP dataset. The inferior performance
on both tasks suggests that vq-wav2vec features are more
representative of affective information than the emobase
feature set. A similar tendency was observed on the MELD.

The transformer, when removing the GRU layer, neg-
atively affects the pretrained and verification tasks on
two datasets. However, it still outperformed other fea-
tures and network architectures in Table 5. The BLSTM,
BLSTM+NetVLAD, and CNN+NetVLAD have recently been
used in the SER works. The BLSTM+NetVLAD gen-
erally achieved better performance than BLSTM and

CNN+NetVLAD. For the frustration recognition task, the
verification performance of BLSTM+NetVLAD (F1 = 65.8%
and UAR = 65.9%) was higher than that for BLSTM (F1 =
62.8% and UAR = 62.9%) with 3.0% improvement in the F1
score and UAR. Similar results were also observed on the
MELD, where BLSTM+NetVLAD attained margins for the
F1 score of 6.2%, 3.3%, and -0.1%, and for the UAR of 3.0%,
6.7%, and 6.2% for surprise, fear, and disgust verification
tasks, respectively compared to the BLSTM. Although both
models obtained similar F1 scores on the disgust verification
task, BLSTM+NetVLAD still had a higher UAR value in
recognizing the disgust class. The NetVLAD layer improved
the BLSTM network for the four-class recognition and the
verification cross-task results.

The proposed NAMP using a GRU layer and transformer
outperformed BLSTM+NetVLAD on the frustration verifica-
tion task on the IEMOCAP dataset (5.1% F1 and 5.0% UAR)
and the surprise verification on the MELD (6.1% F1 and
1.3% UAR). In addition, CNN+NetVLAD was designed for
speaker recognition [55] although it did not improve SER
performance. Directly applying the network architecture
from other similar enroll-to-verify recognition tasks (such
as speaker verification) can be ineffective for SER.

In this experiment, we see that the performance of
the pretraining task and new verification task is mostly
positively correlated. The pretrained feature space of the
emotion representations influences the verification results.
Therefore, a discriminative network architecture is essential
for robust cross-task verification.

4.4 Exp III: Different Emotion Verification Tasks
In this section, we performed new verification tasks for dif-
ferent emotion classes versus frustration, (i.e., angry versus
frustration, happy versus frustration, and sadness versus
frustration). The results are listed in Table 6. In the IEMO-
CAP dataset, the binary verification results to differentiate
sad and frustration achieved an 80.1% F1 score and an 82.0%
UAR value, higher than results of other emotion classes. The
sad class obtained 64.9% recall in the pretrained four-class
result which was inferior to the angry class. The pretrained
results did not directly indicate the performance of a new
task, and the enroll-to-verify approach was effective to be
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TABLE 6
The results different verification tasks E′, choosing any of the four emotion categories (neutral, angry, happy, sad) versus an unseen emotion class

on the IEMOCAP dataset and the MELD dataset.

IEMOCAP Pretrain Verify MELD Pretrain Verify
4-class Frustration 4-class Surprise Fear Disgust

Emotion UAR F1 UAR Emotion UAR F1 UAR F1 UAR F1 UAR
Neutral 61.4 70.9 71.9 Neutral 36.1 71.1 60.9 77.6 57.9 72.4 59.8
Angry 69.1 64.4 65.1 Angry 44.7 57.2 56.9 60.4 55.4 61.4 55.0
Happy 54.0 67.6 65.8 Happy 41.0 53.2 52.6 66.2 54.2 60.9 66.5

Sad 64.9 80.1 82.0 Sad 38.6 57.5 57.0 63.5 54.1 65.3 68.6

Fig. 3. The cosine distance visualized histogram of the each emotion versus neutral. The first row are figures using positive margin and the second row are
figures using negative margin.

applied to different task definitions. In the MELD, the tasks,
differentiating surprise, fear, or disgust classes from the neu-
tral class generally outperformed the tasks differentiating
these classes from other classes (angry, happy, and sad).
The surprise, fear, and disgust classes are all basic emotions,
whose acoustic samples might not be fully represented by
the four classes used in the pretrained model.

The performance on the new verification task reflects
the relationship between the two emotion classes. The sad
class versus surprise class obtained a 57.5% F1 score and
a 57.0% UAR value, whereas the happy class attained the
lowest F1 score and UAR value. The acoustic samples of the
surprise class are embedded as a representation much closer
to the samples of the happy class than the sad class in the
latent embedding space. The low UAR results in the tasks
of the fear or disgust class were due to an imbalanced data
distribution. The UAR value of the disgust versus angry
(55.0%) task was relatively lower than the disgust versus
happy or sad class. These results imply similar acoustic
characteristics between the angry and disgust classes.

5 ANALYSES

5.1 Embedding Distance Visualization

In this section, we use visualized distance polar bars to
demonstrate the effects of the negative margin in the
framework. We compute the enrolled neutral representation
(Pneu) and enrolled emotion representation (P k) for every
emotion class by averaging all emotion embeddings in that
class. For each encoded query sample Eq , we compute the
cosine distance to Pneu and P k as Dneu and Dk, and the
polar angle using 180 ∗ Dneu

Dneu+Dk
. We set neutral at 0◦ and

the target emotion at 180◦ to examine the intra-class distance
to the emotion centroids and interclass data variance. Fig.
3 reveals the accumulated cosine distance histogram of
emotion classes with AMProto in the first row (positive

TABLE 7
The verification task results using three-class and four-class pretrained

model.

IEMOCAP 5-class 4-class 3-class

Pretrain F1 UAR F1 UAR F1 UAR
56.7 52.1 61.3 62.3 71.7 73.2

Verify F1 UAR F1 UAR F1 UAR
Frustration 66.4 66.4 70.9 71.9 68.9 69.2

MELD 5-class 4-class 3-class

Pretrain F1 UAR F1 UAR F1 UAR
24.5 32.8 43.3 40.4 41.5 50.7

Verify F1 UAR F1 UAR F1 UAR
Surprise - - 71.1 60.9 68.3 59.1

Fear 64.9 54.7 77.6 57.9 75.9 56.9
Disgust 62.8 55.8 72.4 59.8 71.2 58.3

margin) and NAMP in the second row (negative margin).
By examining angry, happy, and sad classes relative to the
neutral class, we observe that the positive margin results
in a greater distance between the target emotion group in
blue and neutral group in green compared to the negative
margin. This phenomenon is more evident in the IEMOCAP
than the MELD due to the better multiclass pretraining
performance. However, the unseen frustration samples in
the IEMOCAP and the surprise samples in the MELD have
more overlapping distributions; therefore, they are less dis-
criminative on the unseen classes with a positive margin.
This conclusion corroborates the cross-task results in Table 4
revealing that a properly overlapping emotion distribution
in the latent space of the basic emotion model can enable
more representative space for unseen classes, especially in
verifying a case that requires no further supervised training.
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Fig. 4. The cross-task verification results using a different number of enrolled
samples. We used the number of samples on the x-axis for enrollment and
performed verification to derive the resulting UAR on the IEMOCAP dataset.

5.2 Pretrained Emotion Classes for Prototype Encoder
The previous emotion verification experiments were con-
ducted by pretraining the commonly-used four-class emo-
tion recognition model. This analysis experiment used a
five-class pretrained model by adding the surprise class and
a three-class pretrained model by removing the happy class
from the four-class. In Table 7, the three-class pretrained
models usually obtained lower F1 and UAR than four-
class models in different tasks and the five-class pretrained
models performed worse than both the three-class and four-
class models. The results demonstrated the importance of
the pretrained emotional feature space. Increasing diversity
of the pretraining data from the three emotion classes to
four classes enhances the ability to properly represent new
samples in a new task, and thus improves the verification
performance. When removing data for the happy class from
the pretraining in the IEMOCAP, the differentiation task for
the frustration and neutral classes, the F1 score declined
from 70.9% to 68.9%, and the UAR declined from 71.9%
UAR to 69.2%. The added surprise class in the five-class pre-
trained models had much fewer samples (107 samples) and
was not easy to be discriminated which might negatively
affect the discriminative power of the learned emotional
feature space. In the MELD, the pretrained five-class, four-
class, and three-class tasks obtained 32.8%, 40.4% and 50.7%
UAR values, respectively. New tasks for surprise, fear, and
disgust verification performed slightly better using the four-
class than the three-class prototype encoder. The difference
in F1 score and UAR values on the three tasks between these
two pretrained prototype encoders was less than 2%. The
reduction in the pretrained emotion classes degrading the
verification performances suggests the importance of con-
structing a pretrained emotion space using more emotion
classes. However, the five-class pretrained model with only
24.5% F1 score resulted in much lower cross-task results
than pretrained models using 4 basic emotion classes. The
recall of the surprise class was only 26.7%. The results led
to a conclusion that the pretrained emotional feature space
would be poor if the discriminatory boundary between pre-
trained emotion classed was not learned effectively.

5.3 Effects on the Number of Enrolled Samples
In this section, we explored the effects on the number
of enrolled samples. We chose the IEMOCAP dataset in

Fig. 5. The cross-task verification results using enrolled samples with different
label confidence. We used the different confidence groups of samples on the
x-axis for enrollment and performed verification to derive the resulting UAR
on the IEMOCAP dataset.

this experiment because it performed well when given a
sufficient number of validation and testing samples in each
emotion class. In the previous setting described in Section
4.1, we enrolled 10 utterances for each emotion class in a
new task, and these utterances were randomly selected from
the validation set. In Fig. 4, we presented the UAR value
of the binary frustration verification task using different
enrolled utterances for each emotion class.

Enrolling more utterances should result in more accurate
embedding descriptions for the prototype of the unseen
frustration class. However, by increasing the number of
enrolled utterances, it would bring about more cost and
inconvenience in real-world applications. This experiment
showed that enrolling around 10 utterances for each emo-
tion class can achieve comparable performance with more
utterances. The estimated total utterance length of the 10
enrolled utterances for each emotion class are around 25.5
seconds in IEMOCAP. If only enrolling, one utterance, the
frustration verification result could still attain a 59.2% UAR.
However, using very few utterances for enrollment is likely
to cause significant variation. This analysis shows that rep-
resenting an emotion class with a pre-trained prototype
created by 10 enrolled utterances is adequate for robust
cross-task emotion verification.

5.4 Effects on Label Confidence of Enrolled Samples

We investigated the verification results using enrolled sam-
ples with different label confidence. In the IEMOCAP
dataset, each sample was labeled by at least 3 annotators
and thus we could identify samples consistently annotated
as the same labels to examine the effect on the verification
results. We calculated a consistent ratio for each sample by
the number of annotators labeling the same as the final
label divided by the number of total annotators. The final
label was determined by the majority vote and thus the
possible ratio values for the most samples labeled by 3 or
4 annotators were 0.5, 0.67, 0.75, and 1. The samples with
confident ratio smaller than 0.5 were not included in the
training and evaluation. We set a strict rule to determine a
confident group as the totally consistent samples (consistent
ratio equals to 1) and a less confident group with other
samples. We also examined the cases only enrolling con-
fident neutral samples but less confident frustration sam-
ples (denoted as confident neutral in Fig. 5) and the cases
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enrolling confident frustration samples but less confident
neutral samples (denoted as confident frustration in Fig. 5).

Fig. 5 shows the verification results using different label
confidence group in the enrollment step. We observed that
the less confident group obtained lower UAR (70.7%) than
the confident group (72.1%). The confident neutral group
achieved superior UAR (72.9%) than the confident group.
In contrast, the confident frustration group even degraded
than the less confident group. The results reflected that
enrolling samples consistently labeled as neutral was more
beneficial which could provide a powerful baseline pro-
totype for the verification step. The frustration class was
naturally easy to co-occurred with other emotions such as
anger or sadness. The use of confident frustration but less
confident neutral samples might result in confusion for the
complex frustration samples. The neutral space enrolled by
less confident samples also brought about negative effects.

6 CONCLUSION

This work proposes a novel and simple emotion verification
approach to perform cross-task emotion recognition task
with only a few enrollment samples. We demonstrated the
promising accuracy on two different larget scale datasets,
and these results are comparable to the scenario of recol-
lecting and labeling the unseen emotion class. The negative
margin also reflects a pivotal strategy to construct the emo-
tion space for unseen classes. Several experimental results
indicate that the pretrained encoder using a discriminative
architecture and properly selected negative margin can ben-
efit the cross-task performance. The verification can be ap-
plied to different new task definitions, and the relationships
between emotion classes, such as the frustration class in
the IEMOCAP dataset are more similar to the manifestation
of the anger class than sadness class. In the analyses, we
showed the effects of different modules in the framework,
such as the loss margin, pretrained emotion classes, and
enrollment samples.

Several future directions can be advanced to further gen-
eralize SER. Extending cross-task to cross-database scenar-
ios allows the model to recognize unseen emotion categories
collected in different data recording conditions. A variety of
datasets can be explored for diverse applications on various
emotion classes. The finding that pretrained feature space is
vital for verification leads to a future direction to pretrain
using different emotion classes. Learning a pretrained space
using additional contextual factors and different advanced
deep networks will increase model robustness and general-
izability. Investigating multimodal signals using the enroll-
to-verify approach is also a direction to improve recognition
performance. We hope this work initiates a new line of
research in the SER domain.
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